Singularity analysis of a reaction-diffusion equation with a solution-dependent Dirac delta source
نویسندگان
چکیده
We analyze the existence and singularity of solution to a reaction-diffusion equation, whose reaction term is represented by a Dirac delta function which depends on the solution itself. We prove that there exists a unique analytic solution with a logarithmic singularity at the origin.
منابع مشابه
Finite Element Convergence for Time-Dependent PDEs with a Point Source in COMSOL 4.2
The FEM theory provides the basis for quantification on the accuracy and reliability of a numerical solution by the a priori error estimates on the FEM error vs. the mesh spacing of the FEM mesh. This paper presents information on the techniques needed in COMSOL 4.2 to enable computational studies that demonstrate this theory for time-dependent problems, in extension of previous work on station...
متن کاملFourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry
The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...
متن کاملEffects of thermal diffusion and chemical reaction on MHD transient free convection flow past a porous vertical plate with radiation, temperature gradient dependent heat source in slip flow regime
An analytical investigation is conducted to study the unsteady free convection heat and mass transfer flow through a non-homogeneous porous medium with variable permeability bounded by an infinite porous vertical plate in slip flow regime while taking into account the thermal radiation, chemical reaction, the Soret number, and temperature gradient dependent heat source. The flow is considered u...
متن کاملA numerical investigation of a reaction-diffusion equation arises from an ecological phenomenon
This paper deals with the numerical solution of a class of reaction diffusion equations arises from ecological phenomena. When two species are introduced into unoccupied habitat, they can spread across the environment as two travelling waves with the wave of the faster reproducer moving ahead of the slower.The mathematical modelling of invasions of species in more complex settings that include ...
متن کاملNumerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Appl. Math. Lett.
دوره 25 شماره
صفحات -
تاریخ انتشار 2012